Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 2656-2668, 2023.
Article in Chinese | WPRIM | ID: wpr-999028

ABSTRACT

Asparaginyl endopeptidases (AEPs) in plants belong to the family of cysteine protease that undergo self-activation in the form of zymogen in acidic vacuole and play important physiological roles in maturation of seed storage proteins, protein degradation, programmed cell death and host defense. Bioprocessing enzymes (peptidyl Asx-specific ligases, PALs) that promote the maturation of cyclotides have recently been isolated and identified from several cyclotide-rich plants. PALs derived from AEPs can site-specifically catalyze the formation of asparagine or aspartate peptide bonds. Due to the advantages of relatively traceless peptide bonds and broad substrate spectrum and high catalytic efficiency, they have been playing important roles in the cyclization and modification of peptides and proteins, and are powerful tools for improving the stability of peptide drugs. This review describes the physiological functions of AEPs in plants and summarizes the discoveries, structural characteristics, catalytic mechanism and protein engineering of PALs, as well as the limitation of their applications and future trends. In addition, the applications of PALs in cyclotides biosynthesis and the development of macrocyclic peptides are highlighted, with the aim of providing a new idea for the biocatalytic synthesis of cyclic peptides.

2.
Acta Pharmaceutica Sinica ; (12): 2234-2239, 2022.
Article in Chinese | WPRIM | ID: wpr-936589

ABSTRACT

In the process of evolution, pathogenic Streptococcus pyogenes secretes an immunoglobulin G-degrading enzyme IdeS which can specifically cleave the hinge region of immunoglobulin G in order to escape the immune response against the host. On the one hand, IdeS can be used for IgG fingerprinting as a tool enzyme combined with mass spectrometry technology. On the other hand, IdeS can be used to treat the antibody-responsive diseases produced by autoimmunity as a therapeutic protein. In this study, the backbone of plasmid pCold was used to construct two expression vectors of recombinant protein IdeS, which were heterologously expressed in Escherichia coli Shuffle T7. After purification by affinity chromatography, the recombinant IdeS activity was detected and their activity differences between the two were compared. Among them, the yield of the recombinant IdeS containing the His6-tag at the N-terminus was 4 mg·L-1, and the cleavage reaction with antibody IgG1 at 1∶200 (m/m) at 37 ℃ for 30 min could complete. However, the yield of the recombinant IdeS containing both the N-terminal His6 tag and the C-terminal silica affinity tag (silica bing peptide, SiBP) is 1.5 mg·L-1, and the degradation reaction with antibody IgG1 at 1∶20 (m/m) at 37 ℃ for 30 min could reach the end. The C-terminal fusion peptide has a great influence on the yield and activity of IdeS, which is not conducive to subsequent application in drug development. Above all, the recombinant IdeS containing the His6-tag at the N-terminus expressed by this system has high activity and can fully meet the needs of antibody drug development and mapping analysis of IgG.

3.
Acta Pharmaceutica Sinica ; (12): 627-632, 2015.
Article in Chinese | WPRIM | ID: wpr-257090

ABSTRACT

Peptide cyclization, a pivotal approach to modifying linear precursors of proteins and pepticles, has been used to enhance their biological activities and serum stabilities. Recently, sortase A (SrtA) from Staphyloccus aureus becomes a promising new technology for efficiently incorporating site specific modifications into proteins, conjugating the cell surface and cyclizing the linear peptides. In this study, we constructed two recombinant expression systems, one with chitin binding domain and the other with six-histidine tag and chitin binding domain on the N-terminal of SrtA, separately. The results of enzymatic kinetics indicate that the two recombinant tags do not impair the transpeptidase activity of SrtA compared with the standard reaction reported under the same reaction condition. The two synthesized peptides with N-ternimal three glycines and C-terminal penta-amino acid motif, LPETG, were cyclized using immobilized and recycled SrtA. The SrtA-based cyclization promises to represent a simple method for easy and efficient enzymatic synthesis of large cyclic peptides.


Subject(s)
Aminoacyltransferases , Metabolism , Bacterial Proteins , Metabolism , Cyclization , Cysteine Endopeptidases , Metabolism , Enzymes, Immobilized , Metabolism , Kinetics , Peptides , Metabolism , Peptides, Cyclic , Staphylococcus aureus
4.
Acta Pharmaceutica Sinica ; (12): 905-912, 2014.
Article in Chinese | WPRIM | ID: wpr-244996

ABSTRACT

Three cyclotides were isolated from the whole plant of Viola yedoensis in this study. The two, vary peptide E and cycloviolacin Y5, were previously reported, and a novel cycloviolacin VY1 was characterized according to the interpretation of MS/MS fragmentation of peptides which were produced from the reduced and alkylated parent peptide with the digestion of Endo Lys-C, trypsin and chymotrypsin, separately. The stability of remarkable resistance to proteolytic degradation by trypsin and chymotrypsin, and that of thermal denaturation was confirmed again. Besides, the IC50 value of cycloviolacin VY1 against influenza A H1N1 virus was (2.27 +/- 0.20) microg x mL(-1). It is the first cyclotide reported with anti-influenza A H1N1 virus activity in vitro assay.


Subject(s)
Antiviral Agents , Pharmacology , Cyclotides , Pharmacology , Influenza A Virus, H1N1 Subtype , Tandem Mass Spectrometry , Viola , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL